Home » Small Nano Sugar: a new glucose-responsive insulin delivery system
Small Nano Sugar: a new glucose-responsive insulin delivery system
Professor Christoph Hagemeyer’s Novel Insulins Innovation Incubator award
Home »
Professor Christoph Hagemeyer’s Novel Insulins Innovation Incubator award
In this project, Professor Hagemeyer and his team at Monash University, Australia will work to bring a new insulin delivery system closer to clinical trials. They have recently demonstrated that their first generation of insulin delivery system, called ‘Small Nano Sugar’, has a fast and efficient response to changes in blood glucose levels in animals with type 1 diabetes.
The Small Nano Sugar system carries insulin and a glucose-sensing molecule in tiny particles called nano sugars, which are injected under the skin. Insulin is then released from these particles, only when the body needs it. The insulin-carrying nano sugar particles react to very small changes in glucose, and release insulin only when glucose levels are outside a target range, without any input from the user.
Prof Hagemeyer said:
“I’m thrilled to receive funding from the Type 1 Diabetes Grand Challenge for our project, together with our collaborators from the University of Melbourne and RMIT University. Our innovative approach leverages biocompatible, glucose-sensitive nano sugar particles to deliver long-lasting insulin therapy, significantly improving blood glucose management and quality of life for individuals with type 1 diabetes. The funding will accelerate further research towards clinical translation and first in human trials.”
In this project, Prof Hagemeyer will develop a second generation of this nano sugar-insulin system, based on advanced nanotechnology. The new design is supported by the team’s results from animals with type 1 diabetes and could bring the system a step closer to clinical trials in people with type 1 diabetes.
The team will check the system works effectively in realtime at mealtimes and throughout the day in primates with type 1 diabetes. Testing the system in animals will also allow the researchers to explore whether it can help protect against long-term complications of diabetes.
The next-generation Small Nano Sugar system has the potential to reduce the number of times people with type 1 have to inject insulin, reducing some of the burden of managing the condition. The system could also prevent dangerously low blood glucose, reducing the risk and fear of hypos, as well as the burden of multiple daily injections by keeping levels in a safe range for longer.